In this thesis, we explore the benefits of combining static and dynamic analysis techniques to complement each other and reduce their limitations. While most previous work has often relied on using these techniques in isolation, we combine their strengths in different and novel ways that allow us to further study different privacy issues on the Android ecosystem. Namely, we demonstrate the potential of combining these complementary methods to study three inter-related issues: • A regulatory analysis of parental control apps. We use a novel methodology that relies on easy-to-scale static analysis techniques to pin-point potential privacy issues and violations of current legislation by Android apps and their embedded SDKs. We rely on the results from our static analysis to inform the way in which we manually exercise the apps, maximizing our ability to obtain real evidence of these misbehaviors. We study 46 publicly available apps and find instances of data collection and sharing without consent and insecure network transmissions containing personal data. We also see that these apps fail to properly disclose these practices in their privacy policy. • A security analysis of the unauthorized access to permission-protected data without user consent. We use a novel technique that combines the strengths of static and dynamic analysis, by first comparing the data sent by applications at runtime with the permissions granted to each app in order to find instances of potential unauthorized access to permission protected data. Once we have discovered the apps that are accessing personal data without permission, we statically analyze their code in order to discover covert- and side-channels used by apps and SDKs to circumvent the permission system. This methodology allows us to discover apps using the MAC address as a surrogate for location data, two SDKs using the external storage as a covert-channel to share unique identifiers and an app using picture metadata to gain unauthorized access to location data. • A novel SDK detection methodology that relies on obtaining signals observed both in the app’s code and static resources and during its runtime behavior. Then, we rely on a tree structure together with a confidence based system to accurately detect SDK presence without the need of any a priory knowledge and with the ability to discern whether a given SDK is part of legacy or dead code. We prove that this novel methodology can discover third-party SDKs with more accuracy than state-of-the-art tools both on a set of purpose-built ground-truth apps and on a dataset of 5k publicly available apps. With these three case studies, we are able to highlight the benefits of combining static and dynamic analysis techniques for the study of the privacy and security guarantees and risks of Android apps and third-party SDKs. The use of these techniques in isolation would not have allowed us to deeply investigate these privacy issues, as we would lack the ability to provide real evidence of potential breaches of legislation, to pin-point the specific way in which apps are leveraging cover and side channels to break Android’s permission system or we would be unable to adapt to an ever-changing ecosystem of Android third-party companies.
Keywords
Static AnalysisDynamic AnalysisMobile AppsData Privacy
Institute(s)
Universidad Carlos III de Madrid
Year
2022
Abstract
Author(s)
Álvaro Feal